\[2xy=(y-x^2)y'.\] \[xy'+y=x^4y^3.\] \[y'=f(t).\] \[(1+e^x)yy'=e^x.\] \[y'''-3y''+3y'-y=0.\] \[y'=(1-t)y^2+(2t-1)y-t.\] \[-xy'+y=3y^2.\] \[x^2y''-xy'+2y=0.\] \[x^3+xy^2+(x^2y+y^3)y'=0.\] \[y''-y=te^t.\] \[y''-2y'+y=\Frac{e^x}{x}.\] \[xy'-y=x.\] \[xy'-y=0.\] \[2xy+(1+x^2)y'=0.\] \[2xyy'=4x^2+3y^2.\] \[e^y+(te^y+2y)y'=0.\] \[x+yy'=x^2+y^2.\] \[y'=x\sqrt{y}.\] \[yy'+x=0.\] \[(x^2+1)y'+4xy=x.\] \[y''-6y'+13y=0.\] \[y''-2y'+y=0.\] \[xy''+y'=1.\] \[y'=\Frac{2y+(x+1)^4}{x+1}.\] \[xy'+y=3x^2.\] \[x^2y''+2xy'=1.\] \[y'+\Frac{y}{x+1}=-\Frac{1}{2}(x+1)^3y^3.\] \[y''+y=t\sen2t-1.\] \[y''-3y'+2y=x(x+1)e^{3x}.\] \[t+y-(t-y)y'=0.\] \[y'=-8xy^2+4x(4x+1)y-8x^3-4x^2+1.\] \[y''+y=\log t-\Frac{1}{t^2}.\] \[y^4-2x^3y+(x^4-2xy^3)y'=0.\] \[y'+2y=t^2+2t.\] \[3x^2+4xy+(2x^2+2y)y'=0.\] \[xy'+y=x^2y^2.\] \[x^2y'+2x^3y=y^2(1+2x^2).\] \[1+e^xy+xe^xy+(xe^x+2)y'=0.\] \[xy'+y=0.\] \[x^2+2xy-x^2y'=0.\] \[y''-4y'+5y=1+e^{2t}\sen t.\] \[3e^x\tan y=y'(e^x-2)\sec^2y.\] \[y'=x^2-2xy+y^2.\] \[y^{(4)}-12y'''+46y''-60y'+25y=e^{2t}.\] \[y'\sen t\cos y=-\cos t\sen y.\] \[xy^2y'+y^3=x\cos x.\] \[\Frac{2x}{y^3}+\Frac{y^2-3x^2}{y^4}y'=0.\] \[y'=\Frac{(1-2x)y^4-y}{3}.\] \[y''+\Frac{2}{1+t}y'=0.\] \[8ty'-y=\Frac{1}{y^3\sqrt{t+1}}.\] \[-xy'+y=3y^2.\] \[y'+\Frac{y}{2t}=\Frac{t}{y^3}.\] \[y'=\cos^2y.\] \[x^2+xy+3y^2-(x^2+2xy)y'=0.\] \[y'=x\sqrt{y}.\] \[y''+2y=0.\] \[t^2y''+ty'-4y=0.\] \[\Frac{y'}{x}-\Frac{2y}{x^2}=x\cos x.\] \[y'-y=e^ty^2.\] \[ty'+6y=3ty^{4/3}.\] \[y''-y'-2y=0.\] \[x'+3 x=0.\] \[y'''-y''-y'+y=te^t+2e^{-3t}+\cos t.\] \[y'''-y''+9y'-9y=0.\] \[t^2-y^2+2tyy'=0.\] \[y^{(5)}+2y'''+y'=t.\] \[y'+y\cos x=\sin x\cos x.\] \[t^3y'''+2t^2y''-ty'+y=12t^2.\]